मराठी

If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.

उत्तर

Let ABC be the right angled triangle with BC = x , AC = y such that x + y = k, where k is any constant. Let θ be the angle between the base and the hypotenuse.

Let A be the area of the triangle.

`A=1/2xxBC×AC=1/2xsqrt(y^2−x^2)`

`⇒A^2=x^2/4(y^2−x^2)`

`⇒A^2=x^2/4[(k−x)^2−x^2]`

`⇒A^2=(k^2x^2−2kx^3)/4           .....(1)`

Differentiating w.r.t. x, we get

`2A(dA)/(dx)=(2k^2x−6kx^2)/4       .....(2)`

`⇒(dA)/(dx)=(k^2x−3kx^2)/(4A)`

For maximum or minimum,

`(dA)/(dx)=0`

`⇒(k^2x−3kx^2)/(4A)=0`

`⇒x=k/3`

Differentiating (2) w.r.t. x, we get

`2((dA)/(dx))^2+2A(d^2A)/(dx^2)=(2k^2−12kx)/4        .....(3)`

Substituting `(dA)/(dx)=0 and x=k/3`  in (3), we get

`(d^2A)/(dx^2)=−k^2/(4A)<0`

Thus, A is maximum when x=k/3.

`x=k/3⇒y=k−k/3=(2k)/3        [∵x+y=k]`

`∴ cosθ=x/y`

`⇒cosθ=(k/3)/((2k)/3)=1/2`

`⇒θ=π/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 2 C

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Prove that the following function do not have maxima or minima:

f(x) = ex


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = x log x


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Find the maximum and the minimum values of the function f(x) = x2ex.


If x + y = 8, then the maximum value of x2y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×