Advertisements
Advertisements
प्रश्न
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
उत्तर
Given, `y = (4 sin theta)/(2 + cos theta) - theta` and interval `[0, pi/2]`
`=> "dy"/("d" theta) = ((2 + cos theta) 4 cos theta - 4 sin theta (- sin theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 cos^2 + 4 sin^2 theta)/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 (cos^2 theta + sin^2 theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4)/((2 + cos theta)^2) - 1`
`= (8 c0s theta + 4 - (4 + cos^2 theta + 4 cos theta))/((2 + cos theta)^2)`
`= (4 cos theta - cos^2 theta)/((2 + cos theta)^2)`
`= ((4 - cos theta) cos theta)/((2 + cos theta)^2)`
cos θ > 0 in `[0, pi/2] ; 4 - cos theta > 0 [0, pi/2]`
`(∵ -1 <= cos theta <= 1, if theta in [0, pi/2]),`
`(2 + cos theta)^2 > 0 [0, pi/2]` ...(being a perfect square)
= `dy/(d theta) > 0` for all `theta in [0, pi/2]`
= y is strictly increasing function in `[0, pi/2]`
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
The interval in which y = x2 e–x is increasing is ______.
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = xx decreases on the interval
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.