Advertisements
Advertisements
प्रश्न
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
विकल्प
(– ∞, 6)
(6, ∞)
(– 6, 6)
(0, – 6)
उत्तर
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be (– ∞, 6).
Explanation:
f(x) = 5 + 36x – 3x2
Differentiate w.r. to ‘x’
f'(x) = 0 + 36 – 6x
For increasing function
f'(x) > 0
`\implies` 36 – 6x > 0
`\implies` 36 > 6x
`\implies` x < 6
i.e., x ∈ (– ∞, 6)
Hence f(x) increases in (– ∞, 6).
APPEARS IN
संबंधित प्रश्न
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.