हिंदी

The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.

विकल्प

  • (– ∞, 6)

  • (6, ∞)

  • (– 6, 6)

  • (0, – 6)

MCQ
रिक्त स्थान भरें

उत्तर

The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be (– ∞, 6).

Explanation:

f(x) = 5 + 36x – 3x2

Differentiate w.r. to ‘x’

f'(x) = 0 + 36 – 6x

For increasing function

f'(x) > 0

`\implies` 36 – 6x > 0

`\implies` 36 > 6x

`\implies` x < 6

i.e., x ∈ (– ∞, 6)

Hence f(x) increases in (– ∞, 6).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×