Advertisements
Advertisements
प्रश्न
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
उत्तर
\[f\left( x \right) = \cos x + a^2 x + b\]
\[f'\left( x \right) = a^2 - \sin x\]
\[\text { Given :f(x) is strictly increasing on R }.\]
\[ \Rightarrow f'\left( x \right) > 0, \forall x \in R\]
\[ \Rightarrow a^2 - \sin x > 0, \forall x \in R\]
\[ \Rightarrow a^2 > \sin x, \forall x \in R\]
\[\text { We know that the maximum value of sin x is 1 }.\]
\[\text { Since } a^2 > \sin x, a^2\text { is always greater than 1 }.\]
\[ \Rightarrow a^2 > 1\]
\[ \Rightarrow a^2 - 1 > 0\]
\[ \Rightarrow \left( a + 1 \right)\left( a - 1 \right) > 0\]
\[ \Rightarrow a \in ( - \infty , - 1) \cup (1, \infty )\]
APPEARS IN
संबंधित प्रश्न
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = ax is increasing on R, if
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
The function f(x) = x3 - 3x is ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
For every value of x, the function f(x) = `1/7^x` is ______
y = x(x – 3)2 decreases for the values of x given by : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.