Advertisements
Advertisements
प्रश्न
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
उत्तर
(A) increasing
`f(x)=x^3-3x^2+3x-100, x in R`
`f'(x)=3x^2-6x+3`
`=3(x^2-2x+1)`
`=3(x-1)^2`
Since, (x – 1)2 is always positive x ≠ 1
f'(x) > 0 for all x ∈ R, x ≠ 1
Hence, f (x) is an increasing function, for all x ∈ R, x ≠ 1
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Function f(x) = cos x − 2 λ x is monotonic decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = x3 − 27x + 5 is monotonically increasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = ax is increasing on R, if
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
The function f(x) = 9 - x5 - x7 is decreasing for
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The function f(x) = x3 - 3x is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Which of the following graph represent the strictly increasing function.
Function given by f(x) = sin x is strictly increasing in.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
A function f is said to be increasing at a point c if ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?