हिंदी

Show that f(x) = x – cos x is increasing for all x. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that f(x) = x – cos x is increasing for all x.

योग

उत्तर

f(x) = x – cos x

∴ f′(x) = 1 + sin x

Note that –1 ≤ sin x ≤ 1, ∀x

∴ –1 + 1 ≤ 1 + sin x ≤ 1 + 1, ∀x

∴ 0 ≤ 1 + sin x ≤ 2, ∀x

i.e., f′(x) ≥ 0 for all x.

Hence, f(x) is increasing for all x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.2: Applications of Derivatives - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = xx decreases on the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = x3 − 27x + 5 is monotonically increasing when


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = loga x is increasing on R, if


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


The function f(x) = x9 + 3x7 + 64 is increasing on


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Show that f(x) = x – cos x is increasing for all x.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


The function `1/(1 + x^2)` is increasing in the interval ______ 


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×