हिंदी

Find the Intervals in Which the Function F ( X ) = 3 2 X 4 − 4 X 3 − 45 X 2 + 51 is (A) Strictly Increasing (B) Strictly Decreasing - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing

उत्तर १

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

 

shaalaa.com

उत्तर २

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

Interval f'(x)= \[6x\left( x - 5 \right)\left( x + 3 \right)\] Result
\[\left( - \infty , - 3 \right)\] f'(-4)=-216 <0 strictly decreasing
\[\left( - 3, 0 \right)\] f'(-1)=  72 >0 strictly increasing
\[\left( 0, 5 \right)\] f'(1)= -96 <0 strictly decreasing
\[\left( 5, \infty \right)\] f'(6)=324 >0 strictly increasing
 

(a) Hence the function is strictly increasing in \[\left( - 3, 0 \right)\] \[\cup\] \[\left( 5, \infty \right)\] .

(b) Also, the function is strictly decreasing in \[\left( - \infty , - 3 \right)\] \[\cup\] \[\left( 0, 5 \right)\] .

shaalaa.com

उत्तर ३

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

Interval f'(x)= \[6x\left( x - 5 \right)\left( x + 3 \right)\] Result
\[\left( - \infty , - 3 \right)\] f'(-4)=-216 <0 strictly decreasing
\[\left( - 3, 0 \right)\] f'(-1)=  72 >0 strictly increasing
\[\left( 0, 5 \right)\] f'(1)= -96 <0 strictly decreasing
\[\left( 5, \infty \right)\] f'(6)=324 >0 strictly increasing
 

(a) Hence the function is strictly increasing in \[\left( - 3, 0 \right)\] \[\cup\] \[\left( 5, \infty \right)\] .

(b) Also, the function is strictly decreasing in \[\left( - \infty , - 3 \right)\] \[\cup\] \[\left( 0, 5 \right)\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The slope of tangent at any point (a, b) is also called as ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×