English

Find the Intervals in Which the Function F ( X ) = 3 2 X 4 − 4 X 3 − 45 X 2 + 51 is (A) Strictly Increasing (B) Strictly Decreasing - Mathematics

Advertisements
Advertisements

Question

Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing

Solution 1

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

 

shaalaa.com

Solution 2

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

Interval f'(x)= \[6x\left( x - 5 \right)\left( x + 3 \right)\] Result
\[\left( - \infty , - 3 \right)\] f'(-4)=-216 <0 strictly decreasing
\[\left( - 3, 0 \right)\] f'(-1)=  72 >0 strictly increasing
\[\left( 0, 5 \right)\] f'(1)= -96 <0 strictly decreasing
\[\left( 5, \infty \right)\] f'(6)=324 >0 strictly increasing
 

(a) Hence the function is strictly increasing in \[\left( - 3, 0 \right)\] \[\cup\] \[\left( 5, \infty \right)\] .

(b) Also, the function is strictly decreasing in \[\left( - \infty , - 3 \right)\] \[\cup\] \[\left( 0, 5 \right)\] .

shaalaa.com

Solution 3

Given:\[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

Differentiating w.r.t. x, we get:
f'(x) = \[6 x^3 - 12 x^2 - 90x\]

\[6x\left( x^2 - 2x - 15 \right)\] At critical points, f'(x)=0.

\[6x\left( x^2 - 2x - 15 \right)\] =0

\[\Rightarrow 6x\left( x^2 - 5x + 3x - 15 \right) = 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 3, 0, 5\]

Interval f'(x)= \[6x\left( x - 5 \right)\left( x + 3 \right)\] Result
\[\left( - \infty , - 3 \right)\] f'(-4)=-216 <0 strictly decreasing
\[\left( - 3, 0 \right)\] f'(-1)=  72 >0 strictly increasing
\[\left( 0, 5 \right)\] f'(1)= -96 <0 strictly decreasing
\[\left( 5, \infty \right)\] f'(6)=324 >0 strictly increasing
 

(a) Hence the function is strictly increasing in \[\left( - 3, 0 \right)\] \[\cup\] \[\left( 5, \infty \right)\] .

(b) Also, the function is strictly decreasing in \[\left( - \infty , - 3 \right)\] \[\cup\] \[\left( 0, 5 \right)\] .

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

RELATED QUESTIONS

Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


The function f(x) = x9 + 3x7 + 64 is increasing on


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×