हिंदी

The slope of tangent at any point (a, b) is also called as ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The slope of tangent at any point (a, b) is also called as ______.

रिक्त स्थान भरें

उत्तर

The slope of tangent at any point (a, b) is also called as gradient.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.4: Applications of Derivatives - Q.2

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = loga x is increasing on R, if


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that f(x) = x – cos x is increasing for all x.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function f(x) = tan-1 x is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Function given by f(x) = sin x is strictly increasing in.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×