हिंदी

If the Function F(X) = 2 Tan X + (2a + 1) Loge | Sec X | + (A − 2) X Is Increasing on R, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then

विकल्प

  • a ∈ (1/2, ∞)

  • a ∈ (−1/2, 1/2)

  • a = 1/2

  • a ∈ R

MCQ

उत्तर

\[f(x) = 2 \tan x + \left( 2a + 1 \right) \log_e \left| \sec x \right| + \left( a - 2 \right) x\]

\[\text { When }\sec x > 0 \Rightarrow \left| \sec x \right| = \sec x\]

\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{\sec x} \times \sec x \tan x + \left( a - 2 \right) \]

\[ = 2 \sec^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]

\[\text { For  f(x) to be increasing}, \]

\[2se c^2 x + \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]

\[ \Rightarrow 2 + 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]

\[ \Rightarrow 2 \tan^2 x + \left( 2a + 1 \right)\tan x + a \geqslant 0\]

\[\text  { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]

\[ \Rightarrow \left( 2a + 1 \right)^2 - 4 . 2 . a \leqslant 0\]

\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]

\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]

\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]

\[ \therefore \left( 2a - 1 \right)^2 = 0\]

\[ \Rightarrow a = \frac{1}{2}\]

\[\text { When } \sec x < 0 \Rightarrow \left| \sec x \right| = - \sec x\]

\[\frac{d}{dx}\left\{ f\left( x \right) \right\} = 2 \sec^2 x + \left( 2a + 1 \right)\frac{1}{- \sec x} \times \sec x \tan x + \left( a - 2 \right)\]

\[ = 2 \sec^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \]

\[\text { For f(x) to be increasing,} \]

\[2se c^2 x - \left( 2a + 1 \right)\tan x + \left( a - 2 \right) \geqslant 0\]

\[ \Rightarrow 2 + 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a - 2 \geqslant 0\]

\[ \Rightarrow 2 \tan^2 x - \left( 2a + 1 \right)\tan x + a \geqslant 0 \]

\[\text { Its discriminant } \leqslant 0 \left[ \because a x^2 + bx + c \geqslant 0 \Rightarrow b^2 - 4ac \leqslant 0 \right]\]

\[ \Rightarrow \left\{ - \left( 2a + 1 \right) \right\}^2 - 4 . 2 . a \leqslant 0\]

\[ \Rightarrow 4 a^2 - 4a + 1 \leqslant 0\]

\[ \Rightarrow \left( 2a - 1 \right)^2 \leqslant 0\]

\[ \left( 2a - 1 \right)^2 < 0 \text { cannot be possible } . \]

\[ \therefore \left( 2a - 1 \right)^2 = 0\]

\[ \Rightarrow a = \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 8 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


Find `dy/dx,if e^x+e^y=e^(x-y)`


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×