हिंदी

Show that y = log(1+x)–2x2+x,x>-1 is an increasing function on its domain. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.

योग

उत्तर

y = `log (1 + x) – (2x)/(2 + x), x > - 1`

∴ `dy/dx =d/dx[log (1 + x) - (2x)/(2 + x)]`

= `(1)/(1 + x).d/dx(1 + x) - ((2 + x).d/dx(2x) - 2x.d/dx(2 + x))/(2 + x)^2`

= `(1)/(1 + x) xx (0 + 1) ((2 + x) xx 2 - 2x(0 + 1))/(2 + x)^2`

= `(1)/(1 + x)   - (4 + 2x - 2x)/(2 + x)^2`

= `(1)/(1 + x) - (4)/(2 + x)^2`

= `((2 + x)^2 - 4(1 + x))/((1 + x)(2 + x)^2)`

= `(4 + 4x + x^2 - 4 - 4x)/((1 + x)(2 + x)^2`

= `(x^2)/((1 + x)(2 + x)^2) >` 0 for all x > – 1

Hence, the given function is increasing function on its domain.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.4 | Q 23 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Show that f(x) = x – cos x is increasing for all x.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The slope of tangent at any point (a, b) is also called as ______.


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Which of the following functions is decreasing on `(0, pi/2)`?


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


y = log x satisfies for x > 1, the inequality ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×