Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^3 - 6 x^2 - 36x + 2\]
\[f'\left( x \right) = 3 x^2 - 12x - 36\]
\[ = 3 \left( x^2 - 4x - 12 \right)\]
\[ = 3 \left( x - 6 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have },\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 3 \left( x - 6 \right)\left( x + 2 \right) > 0\]
\[ \Rightarrow \left( x - 6 \right)\left( x + 2 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 6 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 6 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 6\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 6, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( 6, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 3 \left( x - 6 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 6 \right)\left( x + 2 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 6 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 6 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 6 \]
\[ \Rightarrow x \in \left( - 2, 6 \right)\]
\[\text{ So },f(x)\text { is decreasing on } x \in \left( - 2, 6 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Every invertible function is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The function f(x) = x9 + 3x7 + 64 is increasing on
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
The function f(x) = x3 - 3x is ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Function given by f(x) = sin x is strictly increasing in.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.