Advertisements
Advertisements
प्रश्न
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
उत्तर
If a function is continuous and differentiable and f(0) = f(1) in given domain x ∈ [0, 1],
then by Rolle's Theorem;
f'(x) = 0 for some x ∈ [0, 1]
Given: | f"(x)| ≤ 1
On integrating both sides we get,
|f'(x)| ≤ x
Now, within interval x ∈ [0, 1]
We get, | f' (x)| < 1.
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
The function f(x) = x2 e−x is monotonic increasing when
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = 9 - x5 - x7 is decreasing for
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
For every value of x, the function f(x) = `1/7^x` is ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.