Advertisements
Advertisements
प्रश्न
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
उत्तर
Given that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)`
Differentiating both sides w.r.t. x, we get
f'(x) = `2 - 1/(1 + x^2) + 1/(sqrt(1 + x^2) - x) xx "d"/"dx" (sqrt(1 + x^2) - x)`
= `2 - 1/(1 + x^2) + ((1/(2sqrt(1 + x^2)) xx (2x - 1)))/(sqrt(1 + x^2) - x)`
= `2 - 1/(1 + x^2) + (x - sqrt(1 + x^2))/(sqrt(1 + x^2) (sqrt(1 + x^2 - x))`
= `2 - 1/(1 + x^2) - ((sqrt(1 + x^2) - x))/(sqrt(1 + x^2) (sqrt(1 + x^2) - x))`
= `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2)`
For increasing function, f '(x) ≥ 0
∴ `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2) ≥ 0`
⇒ `(2(1 + x^2) - 1 + sqrt(1 + x^2))/((1 + x^2)) ≥ 0`
⇒ `2 + 2x^2 - 1 + sqrt(1 + x^2) ≥ 0`
⇒ `2x^2 + 1 + sqrt(1 + x^2) ≥ 0`
⇒ `2x^2 + 1 ≥ - sqrt(1 + x^2)`
Squaring both sides, we get 4x4 + 1 + 4x2 ≥ 1 + x2
⇒ 4x4 + 4x2 – x2 ≥ 0
⇒ 4x4 + 3x2 ≥ 0
⇒ x2(4x2 + 3) ≥ 0
Which is true for any value of x ∈ R.
Hence, the given function is an increasing function over R.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
In which one of the following intervals is the function f(x) = x3 – 12x increasing?
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.