हिंदी

The edge of a cube is decreasing at the rate ofcm0.6cmsec. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.

योग

उत्तर

Let x be the edge of the cube and V be its volume at any time t.
Then V = x3
Differentiating both sides w.r.t. t, we get

`"dV"/"dt" = 3x^2"dx"/"dt"`

Now, `dx/dt = (0.6"cm")/sec` and x = 2 cm

∴ `"dV"/dt` = 3(2)2(0.6)

= 7.2
Hence, the volume of the cube is decreasing at the rate of `(7.2"cm"^3)/sec`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.1 [पृष्ठ ७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.1 | Q 12 | पृष्ठ ७२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


The function f(x) = x2 e−x is monotonic increasing when


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = loga x is increasing on R, if


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f(x) = tan-1 x is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×