हिंदी

Find Mpc ( Marginal Propensity to Consume ) and Apc ( Average Propensity to Consume ) If the Expenditure Ec of a Person with Income I is Given As Ec = ( 0.0003 ) I2 + ( 0.075 ) I When I = 1000. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.

योग

उत्तर

Ec = ( 0.0003 ) I2 + ( 0.075 ) I

MPC = `(dE_c)/(dI)`

∴ MPC = 2 ( 0.0003 )I + 0.075
When I = 1000

∴ MPC = 2( 0.0003 ) 1000 + 0.075
∴ MPC = 0.675
∴ APC = `E_c/I`
∴ APC = 0.0003I + 0.075

When I = 1000
∴ APC = 0.0003( 1000 ) + 0.075
∴ APC = 0.375.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = cot−1 x + x increases in the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Show that f(x) = x – cos x is increasing for all x.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


Which of the following graph represent the strictly increasing function.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×