Advertisements
Advertisements
प्रश्न
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
विकल्प
(−∞, 4)
(4, ∞)
(−∞, 8)
(8, ∞)
उत्तर
(−∞, 4)
\[f\left( x \right) = 2 x^2 - kx + 5\]
\[f'\left( x \right) = 4x - k\]
\[\text { Forf(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 4x - k > 0\]
\[ \Rightarrow k < 4x\]
\[\text { Since x } \in \left[ 1, 2 \right], 4x \in \left[ 4, 8 \right] . \]
\[\text { So, the minimum value of 4 x is 4 }.\]
\[\text { Since k < 4x, k < 4 }. \]
\[ \Rightarrow k \in \left( - \infty , 4 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Function f(x) = cos x − 2 λ x is monotonic decreasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = loga x is increasing on R, if
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The function f(x) = x3 - 3x is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = tan-1 x is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.