Advertisements
Advertisements
प्रश्न
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
उत्तर
We have `f (x) = x^3 + 1/x^3`
Differentiating w.r.t x, we get
`f' (x) = 3x^2 - 3/x^4`
(i) For f(x) to be increasing function of x,
`f' (x) > 0`
⇒ x6 - 1 > 0
⇒ (x3 - 1) (x3 + 1) > 0
Either x3 - 1 > 0 or x3 + 1 > 0
⇒ x3 > 1 or x3 > -1
⇒ x > 1 and x > -1
⇒ x > 1
⇒ x ∈ (1, ∞)
or x3 - 1 < 0 and x3 + 1 < 0
x3 < 1 and x3 < -1
⇒ x < 1 and x < -1
⇒ x < -1
⇒ x ∈ (-∞, -1)
Hence, f(x) is increasing in (-∞, -1) ∪ (1,∞)
(ii) For f (x) to be decreasing function of x,
f' (x) < 0
⇒ `3 (x^2 - 1/x^4) < 0`
⇒ `x^2 - 1/x^4 < 0`
⇒ x6 - 1 < 0
⇒ (x3 - 1) (x3 + 1) < 0
Either x3 - 1 > 0 and x3 + 1 < 0
⇒ x3 > 1 and x3 < -1
⇒ x > 1 and x < -1
Which is not possible
or x3 - 1 < 0 and x3 + 1 > 0
⇒ x3 < 1 and x3 > -1
⇒ x < 1 and x > -1
⇒ -1 < x < 1
Hence, f (x) is decreasing in (-1,1).
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = ax is increasing on R, if
Find `dy/dx,if e^x+e^y=e^(x-y)`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f (x) = x2, for all real x, is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
If f(x) = x + cosx – a then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)