हिंदी

Show that y = log(1+x)-2x2+x,x>- 1, is an increasing function of x throughout its domain. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.

योग

उत्तर

We have,

y = log `(1 + x) - (2x) / (2 + x), x > -1`

Here, `dy/dx = 1/ (1 + x) - 2  d/dx  (x/ (2 +x))`

`1/ (1 + x) - 2  {(2 + x) * 1- x (0 +1)}/(2 + x)^2`

`1/ (1 +x) - 4/ (2 + x)^2 = ((2 + x)^2 - 4 (1 + x))/((1 + x) (2 + x)^2)`

`= x^2/((1 + x) (2 + x)^2) AA x > - 1` 

x2 > 0, (2 + x)2 >0 (being perfect square) and  (1 + x) > 0 ∀ x> -1

`dy/dx>= 0` for all x > -1

Hence, y is an increasing function of x throughout its domain.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.2 | Q 7 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


The function f(x) = x2 e−x is monotonic increasing when


Function f(x) = ax is increasing on R, if


Function f(x) = loga x is increasing on R, if


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


The function `1/(1 + x^2)` is increasing in the interval ______ 


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


The function f (x) = x2, for all real x, is ____________.


The function f(x) = tan-1 x is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Which of the following graph represent the strictly increasing function.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×