Advertisements
Advertisements
प्रश्न
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
उत्तर
We have,
y = log `(1 + x) - (2x) / (2 + x), x > -1`
Here, `dy/dx = 1/ (1 + x) - 2 d/dx (x/ (2 +x))`
`1/ (1 + x) - 2 {(2 + x) * 1- x (0 +1)}/(2 + x)^2`
`1/ (1 +x) - 4/ (2 + x)^2 = ((2 + x)^2 - 4 (1 + x))/((1 + x) (2 + x)^2)`
`= x^2/((1 + x) (2 + x)^2) AA x > - 1`
x2 > 0, (2 + x)2 >0 (being perfect square) and (1 + x) > 0 ∀ x> -1
`dy/dx>= 0` for all x > -1
Hence, y is an increasing function of x throughout its domain.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = ax is increasing on R, if
Function f(x) = loga x is increasing on R, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
The function `1/(1 + x^2)` is increasing in the interval ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f (x) = x2, for all real x, is ____________.
The function f(x) = tan-1 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Which of the following graph represent the strictly increasing function.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.