Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
विकल्प
increasing for all x ∈ R, x ≠ 1
decreasing
neither, increasing nor decreasing
decreasing for all x ∈ R, x ≠ 1
उत्तर
increasing for all x ∈ R, x ≠ 1
Explanation:
f(x) = x3 - 3x2 + 3x - 100
Differentiating w.r.t. x, we get
f'(x) = 3x2 - 6x + 3
= 3(x2 - 2x + 1)
= 3(x - 1)2
Note that (x – 1)2 > 0 for all x ∈ R, x ≠ 1.
∴ 3(x - 1)2 > 0 for all x ∈ R, x ≠ 1
∴ f(x) is increasing for all x ∈ R, x ≠ 1.
APPEARS IN
संबंधित प्रश्न
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Function given by f(x) = sin x is strictly increasing in.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?