English

Prove that y = 4sinθ2+cosθ-θ is an increasing function of θ in [0,π2] - Mathematics

Advertisements
Advertisements

Question

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`

Sum

Solution

Given, `y = (4 sin theta)/(2 + cos theta) - theta` and interval `[0, pi/2]`

`=> "dy"/("d" theta) = ((2 + cos theta) 4 cos theta - 4 sin theta (- sin theta))/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4 cos^2 + 4 sin^2 theta)/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4 (cos^2 theta + sin^2 theta))/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4)/((2 + cos theta)^2) - 1`

`= (8 c0s theta + 4 - (4 + cos^2 theta + 4 cos theta))/((2 + cos theta)^2)`

`= (4 cos theta - cos^2 theta)/((2 + cos theta)^2)`

`= ((4 - cos theta) cos theta)/((2 + cos theta)^2)`

cos θ > 0 in `[0, pi/2] ; 4 - cos theta > 0 [0, pi/2]`

`(∵ -1 <= cos theta <= 1, if theta in [0, pi/2]),`

`(2 + cos theta)^2 > 0 [0, pi/2]`       ...(being a perfect square)

= `dy/(d theta) > 0` for all `theta in [0, pi/2]`

= y is strictly increasing function in `[0, pi/2]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 205]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 9 | Page 205

RELATED QUESTIONS

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Which of the following graph represent the strictly increasing function.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×