Advertisements
Advertisements
Question
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Solution
Given, `y = (4 sin theta)/(2 + cos theta) - theta` and interval `[0, pi/2]`
`=> "dy"/("d" theta) = ((2 + cos theta) 4 cos theta - 4 sin theta (- sin theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 cos^2 + 4 sin^2 theta)/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 (cos^2 theta + sin^2 theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4)/((2 + cos theta)^2) - 1`
`= (8 c0s theta + 4 - (4 + cos^2 theta + 4 cos theta))/((2 + cos theta)^2)`
`= (4 cos theta - cos^2 theta)/((2 + cos theta)^2)`
`= ((4 - cos theta) cos theta)/((2 + cos theta)^2)`
cos θ > 0 in `[0, pi/2] ; 4 - cos theta > 0 [0, pi/2]`
`(∵ -1 <= cos theta <= 1, if theta in [0, pi/2]),`
`(2 + cos theta)^2 > 0 [0, pi/2]` ...(being a perfect square)
= `dy/(d theta) > 0` for all `theta in [0, pi/2]`
= y is strictly increasing function in `[0, pi/2]`
APPEARS IN
RELATED QUESTIONS
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Which of the following graph represent the strictly increasing function.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.