हिंदी

Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is a363. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.

योग

उत्तर

Let x be the side of square base and h be the height of the box.
Then x2 + 4xh = a2

∴ h = `(a^2 - x^2)/(4x)`                    ...(1)

Let V be the volume of the box.

Then V = x2h

∴ V = `x^2((a^2- x^2)/(4x))`           ...[By (1)]

∴ V = `(1)/(4)(a^2x - x^3)`               ...(2)

∴ `"dV"/dx = (1)/(4)"d"/"dx"(a^2x - x^3)`

= `(1)/(4)(a^2 xx 1 - 3x^2)`

= `(1)/(4)(a^2 - 3x^2)`

and

`(d^2V)/(dx^2) = (1)/(4).d/dx(a^2 - 3x^2)`

= `(1)/(4)(0 - 3 xx 2x)`

= `-(3)/(2)x`

Now, `"dV"/dx = 0  "gives" (1)/(4)(a^2 - 3x^2)` = 0

∴ a2 – 3x2 = 0

∴ 3x2 = a2

∴ x2 = `a^2/(3)`

∴ x = `a/sqrt(3)`       ...[∵ x > 0]

and

`((d^2V)/dx^2)_("at" x = a/sqrt(3)`

= `-(3)/(2) xx a/sqrt(3)`

= `-sqrt(3)/(2) a < 0`

∴ V is maximum when x = `a/sqrt(3)`

From (2), maximum volume = `[1/4(a^2x - x^3)]_("at" x = a/sqrt3)`

= `(1)/(4)(a^2 xx a/sqrt(3) - a^3/(3sqrt(3)))`

= `(1)/(4)((2a^3)/(3sqrt(3)))`

= `a^3/(6sqrt(3)`

Hence, the maximum volume of the box is `a^3/(6sqrt(3)`  cu. unit.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Miscellaneous Exercise 2 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 12 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Divide the number 30 into two parts such that their product is maximum.


Divide the number 20 into two parts such that sum of their squares is minimum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Show that among rectangles of given area, the square has least perimeter.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


If f(x) = x.log.x then its maximum value is ______.


If x + y = 3 show that the maximum value of x2y is 4.


The function f(x) = x log x is minimum at x = ______.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The maximum value of sin x . cos x is ______.


The maximum value of `(1/x)^x` is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


A function f(x) is maximum at x = a when f'(a) > 0.


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The minimum value of 2sinx + 2cosx is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


Find the maximum and the minimum values of the function f(x) = x2ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×