हिंदी

Solve the following : A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.

योग

उत्तर


Let x be the length, y be the breadth of the rectangle and r be the radius of the semicircle. Then perimeter of the window

Then perimeter of the window = x + 2y + πr, where x = 2r

This is given to be m
∴ 2r + 2y + πr = 30
2y = 30 – (π + 2)r

∴ y = `15 - ((pi + 2)r)/(2)`           ...(1)
The greatest possible amount of light may be admitted if the area of the window is maximum. Let A be the area of the window.

Then A = `xy + (pir^2)/(2)`

= `2yr + (pir^2)/(2)`                        ...[∵ x = 2r]

= `2r[15 - ((pi + 2))/2] + (pir^2)/(2)`   ...[By (1)]

= `30r - (pi + 2)r^2 + pi/(2)r^2`

= `30r - (pi + 2 - pi/2)r^2`

∴ A = `30r - ((pi + 4)/2)r^2`

∴ `"dA"/"dr" = d/"dr"[30r - ((pi + 4)/2)r^2]`

= `30 xx 1 - ((pi + 4)/2) xx 2r`

= 30 – (π + 4)r

and
`(d^2"A")/"dr" = d/"dr"[30 -(pi + 4)r]`

= `0 - (pi + 4) xx 1`
= – (π + 4)

For maximum A, `"dA"/"dr"` = 0

∴ 30 – (π + 4)r = 0

∴ r = `(30)/(pi + 4)`
and
`((d^2"A")/("dr"))_("at"  r = (30)/(pi + 4)) = - (pi + 4) < 0`

∴ A is s maximum when r = `(30)/(pi + 4)`

When r = `(30)/(pi + 4) x = 2 = (60)/(pi + 4)`
and
y = `15 - ((pi + 2))/(2) xx (30)/(pi + 4)`        ...[By (1)]

= `(30pi + 120 - 30pi - 60)/(2(pi + 4)`

= `(30)/(pi + 4)`

Hence, the required dimensions of the window are as follows :

Length of rectangle = `((60)/(pi + 4))` metres,

breadth of rectangle = `((30)/(pi + 4))` metres and

radius of the semicircle = `((30)/(pi + 4))` metres.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Miscellaneous Exercise 2 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 15 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = x log x


Find the maximum and minimum of the following functions : f(x) = `logx/x`


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Determine the maximum and minimum value of the following function.

f(x) = `x^2 + 16/x`


Divide the number 20 into two parts such that their product is maximum.


If f(x) = x.log.x then its maximum value is ______.


If x + y = 3 show that the maximum value of x2y is 4.


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.


If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of `(1/x)^x` is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


If x + y = 8, then the maximum value of x2y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×