हिंदी

Solve the following: A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.

योग

उत्तर


The sides of the rectangular sheet of paper are in the ratio 8 : 15.

Let the sides of the rectangular sheet of paper be 8k and 15k respectively.

Let x be the side of square which is removed from the corners of the sheet of paper.

Then total area of removed squares is 4x2, which is given to be 100.

∴ 4x2 = 100

∴ x2 = 25

∴ x = 5      ...[∵ x > 0]

Now, length, breadth and the height of the rectangular box are 15k – 2x, 8k – 2x and x respectively.

Let V be the volume of the box.

Then V = (15k – 2x)(8k – 2x).x

∴ V = (120k2 – 16kx – 30kx + 4x2).x

∴ V = 4x3 – 46kx2 + 120k2x

∴ `(dV)/dx = d/dx(4x^2 - 46k x^2 + 120k^2x)`

= 4 × 3x2 – 46k × 2x + 120k2 × 1

= 12x2 – 92kx + 120k2

Since, volume is maximum when the square of side x = 5 is removed from the corners, `((dV)/dx)_("at" x = 5)` = 0

∴ 12(5)2 – 92k(5) + 120k2 = 0

∴ 60 – 92k + 24k2 = 0

∴ 6k2 – 23k + 15 = 0

∴ 6k2 – 18k – 5k + 15 = 0

∴ 6k(k – 3) – 5(k – 3) = 0

∴ (k – 3)(6k – 5) = 0

∴ k = 3 or k = `5/6`

If k = `5/6`, then 8k – 2x = `20/3 - 10` = `(-10)/3 < 0`

∴ `k ≠ 5/6`

∴ k = 3

∴ 8k = 8 × 3 = 24 and 15k = 15 × 3 = 45

Hence, the lengths of the rectangular sheet are 24 and 45.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Miscellaneous Exercise 2 [पृष्ठ ९४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 18 | पृष्ठ ९४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

g(x) = logx


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find two numbers whose sum is 24 and whose product is as large as possible.


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = x log x


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Determine the maximum and minimum value of the following function.

f(x) = x log x


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


If f(x) = x.log.x then its maximum value is ______.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The function y = 1 + sin x is maximum, when x = ______ 


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The function `"f"("x") = "x" + 4/"x"` has ____________.


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The minimum value of the function f(x) = xlogx is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×