हिंदी

Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.

योग

उत्तर

Let x be the radius of base, h be the height and S be the surface area of the closed right circular cylinder whose volume is V which is given to be constant.

Then `pir^2h` = V

∴ h = `"V"/(pir^2) = "A"/x^2`,               ...(1)

where A = `"V"/(pir^2)`, which is constant.

Now, S = 2πxh + 2πx2

= `2pix ("A"/x^2) + 2pix^2`         ...[By (1)]

= `(2pi"A")/x + 2pix^2`

∴ `"dS"/dx = d/dx((2pi"A")/x + 2pix^2)`

= `2pi"A"(- 1)x^-2 + 2pi xx 2x`

= `(-2pi"A")/x^2 + 4pix`
and
`(d^2S)/(dx^2) = d/dx((-2pi"A")/x^2 + 4pix)`

= `-2pi"A"(-2)x^-3 + 4pi xx 1`

= `(4pi"A")/x^3 + 4pi`

Now, `"dS"/dx = 0  "gives" (-2pi"A")/x^2 + 4pix`= 0

∴ `-2pi + 4pix^3` = 0

∴ `4pixx^3 = 2pi"A"`

∴ x3 = `"A"/(2)`

∴ x = `("A"/2)^(1/3)` 
and
`((d^2S)/(dx^2))_("at" x  = ("A"/2)^(1/3)`

= `(4pi"A")/(("A"/2)) + 4pi`
= 12π > 0

∴ by the second derivative test, S is minimum when  x = `("A"/2)^(1/3)`

When x = `("A"/2)^(1/3)`, from (1),

h = `"A"/(("A"/2)^(2/3)`

= `2^(2/3)."A"^(1/3)`

= `2.("A"/2)^(1/3)`

∴ h = 2x
Hence, the surface area is least when height of the closed right circular cylinder is equal to its diameter.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.4 | Q 21 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Show that among rectangles of given area, the square has least perimeter.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Determine the maximum and minimum value of the following function.

f(x) = `x^2 + 16/x`


Divide the number 20 into two parts such that their product is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


Divide the number 20 into two parts such that their product is maximum


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


If y = x3 + x2 + x + 1, then y ____________.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Find the maximum and the minimum values of the function f(x) = x2ex.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×