हिंदी

Examine the maxima and minima of the function f(x) = 2x^3 - 21x^2 + 36x - 20 . Also, find the maximum and minimum values of f(x). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 

Find the maximum and minimum value of the function:

f(x) = 2x3 - 21x2 + 36x - 20

उत्तर १

`f(x)=2x^3-21x^2+36x-20`

`f^'(x)=6x^2-42x+36`

For finding critical points, we take f'(x)=0

`therefore 6x^2-42x+36=0`

`x^2-7x+6=0`

 (x-6)(x-1)=0

For finding the maxima and minima, find f''(x)

f'(x)=12x-42

for x=6

f''(6)=30>0

Minima

for x=1

f''(1)=-30<0

Maxima

Maximum values of f(x) for x=1

f(1)=-3

minimum values of f(x) for x=6

f(6)=-128

∴ the maximum values of the function is -3 and the minimum value of the function is -128.

shaalaa.com

उत्तर २

f(x) = 2x3 - 21x2 + 36x - 20

∴ f'(x) = `2(3x^2) - 21(2x) + 36(1) - 1`

`= 6x^2 - 42x + 36 = 6(x^2 - 7x + 6)`

= 6(x - 1)(x - 6)

f has a maxima/minima if f'(x) = 0

i.e if 6(x - 1)(x-6) = 0

i.e if x - 1= 0   or x - 6 = 0

i.e if x = 0 or x = 6

Now f"(x) = 6(2x) - 42(1) = 12x - 42

∴ f"(1) = 12(1) - 42 = -30

∴ f"(1) < 0

Hence, f has a maximum at x = 1, by the second derivative test.

Also f"(6) = 12(6)- 42 = 30

∴ f"(6) > 0

Hence, f has a minimum at x = 6, by the second derivative test.

Now, the maximum value of f at 1,

`f(1) = 2(1^3) - 21(1^2) + 36(1) - 20`

= 2-21+36-20 = -3

and minimum value of f at x = 6

`f(6) = 2(6^3) - 21(6^2) + 36(1) - 20`

= 432 - 756 + 216 - 20 = -128

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


What is the maximum value of the function sin x + cos x?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Divide the number 20 into two parts such that sum of their squares is minimum.


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Determine the maximum and minimum value of the following function.

f(x) = x log x


Determine the maximum and minimum value of the following function.

f(x) = `x^2 + 16/x`


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


If f(x) = x.log.x then its maximum value is ______.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The function y = 1 + sin x is maximum, when x = ______ 


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Range of projectile will be maximum when angle of projectile is


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Divide 20 into two ports, so that their product is maximum.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The minimum value of 2sinx + 2cosx is ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Find the maximum and the minimum values of the function f(x) = x2ex.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Divide the number 100 into two parts so that the sum of their squares is minimum.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×