हिंदी

Examine the Continuity of the Function: F(X) = Log 100 + Log ( 0.01 + X ) 3x , for X ≠ 0 = 100 3 for X = 0; at X = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine the continuity of the function:

f(x) = `(log100 + log(0.01+x))/"3x"," for "x != 0 =  100/3 `for x = 0; at x = 0.

योग

उत्तर

 for `x!= 0, f(x)= (log 100 + log(0.01+x))/(3x) = (log(1+100x))/(3x)`

For continuity at x = 0, f(0) = f(0-) = f(0 +

`therefore lim_(x->0^-)f(x) = lim_(x->0^-)(log (1+100x))/(3x)= lim_(x->0^-)1/((1+100x)(-3)) (-100)=100/3`

 
`therefore lim_(x->0^+) f(x) = lim_(x->0^+)(log(1+100x))/(3x) = lim_(x->0^+)1/((1+100x)3) (100) = 100/3`
 
As f(0) = f(0-) = f(0 +) = `100/3`, the function is continuous at x= 0 .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×