हिंदी

Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.

योग

उत्तर

Let r be the radius of the circular base, h be the height and S be the total surface area of a right circular cylinder, Then S = 2πr2 + 2πrh.

Let V be the volume of the cylinder with the above dimensions.

∴ `V = pir^2h = pir^2 ((S - 2pir^2)/(2pir))`

`(∵ S = 2pir^2 + 2pirh, ∴ h = (S - 2pir^2)/(2pir))`

`= r/2 (S - 2pir^2)`

⇒ `V = (sr)/2 - pir^3`

Differentiating w.r.t. x, we get

`(dV)/(dr) = S/2- 3pir^2`

For maximum / minimum volume

`(dV)/(dr) = 0`

⇒ `S/2-3pir^2 = 0`

⇒ `r^2 = S/(6pi)`

⇒ `r = sqrt(S/(6pi))`

`(d^2V)/(dr^2) = -6pir`

and `((d^2V)/(dr^2))_(r sqrt (S/(6pi)))`

`= -6pi sqrt (S/(6pi)) < 0`

⇒ V has a maximum value at `r = sqrt (S/ (6pi))`

When `r = sqrt (S/ (6pi)),  `then

`h = (S- 2pi (S/(6pi)))/ (2pi sqrt (S/ (6pi))) = (4pi (S/ (6pi)))/ (2pi sqrt (S/ (6pi)))`

⇒ `h = 2 sqrt (S/(6pi)) = 2` radius = diameter.

So volume is maximum when the height is equal to the diameter of the base.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 20 | पृष्ठ २३३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


Find two numbers whose sum is 24 and whose product is as large as possible.


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Divide the number 30 into two parts such that their product is maximum.


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


Divide the number 20 into two parts such that their product is maximum


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The maximum value of sin x . cos x is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×