Advertisements
Advertisements
प्रश्न
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
उत्तर
f′(x) = –3x3 – 24x2 – 45x
= – 3x(x2 + 8x + 15)
= – 3x(x + 5)(x + 3)
f′(x) = 0
⇒ x = –5, x = –3, x = 0
f″(x) = –9x2 – 48x – 45
= –3(3x2 + 16x + 15)
f″(0) = – 45 < 0. Therefore, x = 0 is point of local maxima
f″(–3) = 18 > 0. Therefore, x = –3 is point of local minima
f″(–5) = –30 < 0. Therefore x = –5 is point of local maxima.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
Find the point on the straight line 2x+3y = 6, which is closest to the origin.
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______
The function y = 1 + sin x is maximum, when x = ______
The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
If x is real, the minimum value of x2 – 8x + 17 is ______.
A function f(x) is maximum at x = a when f'(a) > 0.
The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.
Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.
A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
Find the maximum and the minimum values of the function f(x) = x2ex.
If x + y = 8, then the maximum value of x2y is ______.