Advertisements
Advertisements
प्रश्न
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
उत्तर
Let ABCD be a rectangle inscribed in a circle of radius r. Let AB = x and BC = y.
Then x2 + y2 = 4r2 … (1)
Area of rectangle = xy
= `xsqrt(4r^2 - x^2)` ...[By (1)]
Let f(x) = x2(4t2 – x2)
= 4r2x2 – x4
∴ f'(x) = `d/dx(4r^2x^2 - x^4)`
= 4r2 x 2x – 4x3
= 8r2x – 4x3
and
f"(x) = `d/dx(8r^2x - 4x^3)`
= 8r2 x 1 – 4 x 3x2
= 8r2 – 12x2
For maximum area, f'(x) = 0
∴ 8r2x – 4x3 = 0
∴ 4x3 = 8r2x
∴ x2 = 2r2 ...[∵ x ≠ 0]
∴ x = `sqrt(2)r` ...[∵ x > 0]
and
`f"(sqrt(2r)) = 8r^2 – 12(sqrt(2r))`
= – 16r2 < 0
∴ f(x) is maximum when x = `sqrt(2)r`
If x = `sqrt(2)r`, then from (1),
`(sqrt(2r))^2 + y^2` = 4r2
∴ y2 = 4r2 – 2r2 = 2r2
∴ y = `sqrt(2)r` ...[∵ y > 0]
∴ x = y
∴ rectangle is a square.
Hence, amongst all rectangles inscribed in a circle, the square has maximum area.
APPEARS IN
संबंधित प्रश्न
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = sinx − cos x, 0 < x < 2π
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = sin x + cos x , x ∈ [0, π]
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`
An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].
Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.
A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area.
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`
Divide the number 30 into two parts such that their product is maximum.
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Solve the following:
A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.
Divide the number 20 into two parts such that their product is maximum.
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
The function f(x) = x log x is minimum at x = ______.
A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.
Solution: Let the dimensions of the rectangle be x cm and y cm.
∴ 2x + 2y = 36
Let f(x) be the area of rectangle in terms of x, then
f(x) = `square`
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme value, f'(x) = 0, we get
x = `square`
∴ f''`(square)` = – 2 < 0
∴ Area is maximum when x = `square`, y = `square`
∴ Dimensions of rectangle are `square`
If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.
The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.
The function y = 1 + sin x is maximum, when x = ______
The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.
The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______
The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
The maximum value of `(1/x)^x` is ______.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.
Let A = [aij] be a 3 × 3 matrix, where
aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, "," "otherwise"):}`
Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
The minimum value of the function f(x) = xlogx is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?
Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.