मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.

बेरीज

उत्तर


Let ABCD be a rectangle inscribed in a circle of radius r. Let AB = x and BC = y.
Then x2 + y = 4r2                     … (1)
Area of rectangle = xy
= `xsqrt(4r^2 - x^2)`                 ...[By (1)]
Let f(x) = x2(4t2 – x2)
= 4r2x2 – x4

∴ f'(x) = `d/dx(4r^2x^2 - x^4)`

= 4r2 x 2x – 4x3
= 8r2x – 4x3
and
f"(x) = `d/dx(8r^2x - 4x^3)`

= 8r2 x 1 – 4 x 3x2
= 8r2 – 12x2
For maximum area, f'(x) = 0
∴ 8r2x – 4x3 = 0
∴ 4x3 = 8r2x
∴ x2 = 2r2                            ...[∵ x ≠ 0]
∴ x = `sqrt(2)r`                           ...[∵ x > 0]
and
`f"(sqrt(2r)) = 8r^2 – 12(sqrt(2r))`
= – 16r2 <  0
∴ f(x) is maximum when x = `sqrt(2)r` 
If x = `sqrt(2)r`, then from (1),
`(sqrt(2r))^2 + y^2` = 4r2
∴ y2 = 4r2 – 2r2 = 2r2
∴ y = `sqrt(2)r`                           ...[∵ y > 0]
∴ x = y
∴ rectangle is a square.
Hence, amongst all rectangles inscribed in a circle, the square has maximum area.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Miscellaneous Exercise 2 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 13 | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


What is the maximum value of the function sin x + cos x?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Find the maximum and minimum of the following functions : f(x) = x log x


Divide the number 30 into two parts such that their product is maximum.


Divide the number 20 into two parts such that sum of their squares is minimum.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = x log x


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of sin x . cos x is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Range of projectile will be maximum when angle of projectile is


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

A function f(x) is maximum at x = a when f'(a) > 0.


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×