Advertisements
Advertisements
प्रश्न
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`h(x) = sinx + cosx, 0 < x < pi/2`
उत्तर
given function, `h(x) = sin x + cos x, 0 < x < pi/2`
= h' (x) = cos x - sin x for all `x in (0, pi/2)`
For critical points, let h'(x) = 0
= cos x - sinx = 0
∴ h'(x) = cos x - sin x = cos x (1 - tan x)
`= tan x = 1 = x pi/4`
At x = `pi/4`, if the value of x is kept a little less than `pi/4`, then tan x will be less than 1 and if the value of x is kept a little more than `pi/4`, then tan x will be more than 1.
Thus, the sign of 1 - tan x changes from positive to negative and there is no change in sign in cos x.
Hence, x = `pi/4,`h is maximum.
Local maximum value = h `= (pi/4) = sin pi/4 + cos pi/4`
`= 1/sqrt2 + 1/sqrt2`
`= 2/sqrt2`
`= sqrt2`
APPEARS IN
संबंधित प्रश्न
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`
Find the maximum and minimum of the following functions : f(x) = x log x
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/(3)`.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
If x + y = 3 show that the maximum value of x2y is 4.
The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.
The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.
The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.
A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.
The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
Find the maximum and the minimum values of the function f(x) = x2ex.
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.