मराठी

The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.

पर्याय

  • (`2sqrt2`,4)

  • (`2sqrt2`,0)

  • (0, 0)

  • (2, 2)

MCQ
रिकाम्या जागा भरा

उत्तर

The point on the curve x2 = 2y which is nearest to the point (0, 5) is `underline(2sqrt2,4)`.

Explanation:

Let P(x, y) be any point on the curve x2 = 2y.

The given point is A (0, 5).

PA2 = (x - 0)2 + (y - 5)2 = z (Let)

Z = x2 + (y - 5)2 …(1)

And the curve x2 = 2y …(2)

Putting the value of x2 in equation (1),

Z = 2y + (y - 5)2

= 2y + y2 + 25 - 10y

= y2 + 25 - 8y

Differentiating both sides with respect to y, `(dZ)/dy =2y- 8`

For highest and lowest values, `(dZ)/dy = 0`

⇒ 2y - 8 = 0    ∴ y = 4

From equation (2), x2 = 2 x 4 = 8 ∴ x = 2`sqrt2`

Differentiating both sides again with respect to y, `(d^2Z)/(dy^2) = 2 = +ve`

Z is minimum at x = 2 `sqrt2` y = 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 27 | पृष्ठ २३४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Divide the number 30 into two parts such that their product is maximum.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


If x + y = 8, then the maximum value of x2y is ______.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×