मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.

बेरीज

उत्तर

Let R be the radius and h be the height of the cylinder which is inscribed in a sphere of radius r cm.

Then from the figure,

`"R"^2 + (h/2)^2` = r2

∴ R2  = `r^2 - h^2/(4)`   ...(1)

Let V be the volume of the cylinder.
Then V = πR2h

= `pi(r^2 - h^2/(4))h`   ...[By (1)]

= `pi(r^2 - h^3/(4))`

∴ `"dV"/"dh" = pid/"dh"(r^2h - h^3/(4))`

= `pi(r^2 xx 1 - 1/4 xx 3h^2)`

= `pi(r^2 - 3/4h^2)`
and
`(d^2V)/("dh"^2) = pid/"dh"(r^2 - 3/4h^2)`

= `pi(0 - 3/4 xx 2h)`

= `-(3)/(2)pih`

Now, `"dV"/"dh" = 0  "gives", pi(r^2 - 3/4h^2)` = 0

∴ `r^2 - 3/4h^2` = 0

∴ `(3)/(4)h^2` = r

∴ h2 = `(4r^2)/(3)`

∴ h = `(2r)/sqrt(3)`          ...[∵ h > 0]
and
`((d^2V)/(dh^2))_("at"  h = (2r)/sqrt(3)`

= `-(3)/(2)pi xx (2r)/sqrt(3) < 0`

∴ V is maximum at h = `(2r)/sqrt(3)`

If h = `(2r)/sqrt(3)`, then from (1)

R2 = `r^2 - (1)/(4) xx (4r^2)/(3) = (2r^2)/(3)`

∴ volumeof the largest cylinder

= `pi xx (2r^2)/(3) xx (2r)/sqrt(3) = (4pir^3)/(3sqrt(3)`cu cm.

Hence, the volume of the largest cylinder inscribed in a sphere of radius 'r' cm = `(4r^3)/(3sqrt(3)`cu cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Applications of Derivatives
Exercise 2.4 | Q 22 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Find two numbers whose sum is 24 and whose product is as large as possible.


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Find the maximum and minimum of the following functions : f(x) = x log x


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


Show that among rectangles of given area, the square has least perimeter.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = x log x


Divide the number 20 into two parts such that their product is maximum.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


The maximum value of the function f(x) = `logx/x` is ______.


A function f(x) is maximum at x = a when f'(a) > 0.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


If x + y = 8, then the maximum value of x2y is ______.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×