मराठी

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and x3 and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three time - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.

बेरीज

उत्तर

It is given that, the sum of the surface areas of a rectangular parallelepiped with sides x, 2x and `x/3` and a sphere is constant.

Let S be the sum of both the surface area.

∴ S = 2`(x * 2x + 2x * x/3  +x/3 * x) + 4pi"r"^2` = k

⇒ `4pi"r"^2 = "k" - 6x^2`

⇒ r2 = `("k" - 6x^2)/(4pi)`

⇒ r = `sqrt(("k" - 6x^2)/(4pi)`  .....(i)

Let V denotes the sum of the volume of both the parallelepiped and the sphere.

Then, V = `2x * x * x/3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3pi(("kk" - 6x^2)/(4pi))^(3/2)`

= `2/3 x^3 + 4/3 pi (("k" - 6x^2)/(4pi))^(3/2)`

⇒ V = `2/3 x^3 + 1/(6sqrt(pi)) ("k" - 6x^2)^(3/2)`  ....(ii)

Differentiating w.r.t. x,

`"dV"/"dx" = 2/3 * 3x^2 + 1/(6sqrt(pi)) * 3/2 * ("k" - 6x^2)^(1/2)(-12x)`

= `2x^2 - (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`  ....(iii)

Let `"dV"/"dx"` = 0

⇒ `2x^2 = (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`

⇒ `4x^4 = (9x^2)/pi ("k" - 6x^2)`

⇒ `4pix^4 = 9"k"x^2 - 54x^4`

⇒ `x^2 = (9"k")/(4pi + 54)`

⇒ x = `3sqrt("k"/(4pi + 54))`  .....(iv)

Clearly this is point minima.

When x = `3sqrt("k"/(4pi + 54))`

`"r"^2 = ("k" - 6) ((9"k")/(4pi + 54))/(4pi)`

= `("k"(4pi + 54) - 54"k")/(4pi(4pi + 54))`

= `(4"k"pi)/(4pi(4pi + 54))`

= `"k"/(4pi + 54)`

⇒ r = `sqrt("k"/(4pi + 54))`

⇒ x = 3r

Also V = `2/3x^3 + 4/3 pi"r"^3`

= `2/3(3"r")^3 + 4/3 pi"r"^3`

= `18"r"^3 + 4/3 pi"r"^3`

= `(18 + 4/3 pi)"r"^3`

= `((54 + 4pi)/3)("k"/(4pi + 54))^(3/2)`

= `"k"^(3/2)/(3(4pi + 54)^(3/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 34 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


What is the maximum value of the function sin x + cos x?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Divide the number 20 into two parts such that sum of their squares is minimum.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


If y = x3 + x2 + x + 1, then y ____________.


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The maximum value of the function f(x) = `logx/x` is ______.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×