Advertisements
Advertisements
प्रश्न
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
उत्तर
Let f(x) = sin 2x, interval [0, 2π]
f‘(x) = 2 cos 2x
यदि f'(x) = 0 ⇒ 2 cos 2x = 0
⇒ 2x `= pi/2, (3pi)/2, (5pi)/2, (7 pi)/2 => x = pi/4, (3pi)/4, (5pi)/4, (7 pi)/4`
Hence we find `x = pi/4, (3pi)/4, (5pi)/4, (7 pi)/4` and the value of f at the endpoints of the interval [0, 2 `pi`].
At x = 0, f (0) = sin 0 = 0
x `= 2 pi at, f(2 pi) = sin 2 xx 2 pi = sin 4 pi = 0`
x`= pi/4 at, f(pi/4) = sin 2 xxpi/4 = sin pi/2 = 1`
x `= (3pi)/4 at, f((3 pi)/4) = sin (3 pi)/2 = - 1`
x `= (5pi)/4 at, f((5pi)/4) = sin (5 pi)/2 = 1`
x `= (7pi)/4 at, f((7pi)/4) = sin (7 pi)/2 = -1`
Thus, the function f(x) attains maximum value 1 at `= pi/4` and x`= (5 pi)/4`.
APPEARS IN
संबंधित प्रश्न
A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x2
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find two numbers whose sum is 24 and whose product is as large as possible.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.
Divide the number 30 into two parts such that their product is maximum.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
If f(x) = x.log.x then its maximum value is ______.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
Divide the number 20 into two parts such that their product is maximum
By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima
Solution: f(x) = x3 – 9x2 + 24x
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme values, f'(x) = 0, we get
x = `square` or `square`
∴ f''`(square)` = – 6 < 0
∴ f(x) is maximum at x = 2.
∴ Maximum value = `square`
∴ f''`(square)` = 6 > 0
∴ f(x) is maximum at x = 4.
∴ Minimum value = `square`
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
If y = x3 + x2 + x + 1, then y ____________.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
Find the maximum and the minimum values of the function f(x) = x2ex.
If x + y = 8, then the maximum value of x2y is ______.
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?