English

At what points in the interval [0, 2π], does the function sin 2x attain its maximum value? - Mathematics

Advertisements
Advertisements

Question

At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?

Sum

Solution

Let f(x) = sin 2x, interval [0, 2π]

f‘(x) = 2 cos 2x

यदि f'(x) = 0   ⇒ 2 cos 2x = 0

⇒ 2x `= pi/2, (3pi)/2, (5pi)/2, (7 pi)/2  => x = pi/4, (3pi)/4, (5pi)/4, (7 pi)/4`

Hence we find `x = pi/4, (3pi)/4, (5pi)/4, (7 pi)/4` and the value of f at the endpoints of the interval [0, 2 `pi`].

At x = 0, f (0) = sin 0 = 0

x `= 2 pi   at, f(2 pi) = sin 2 xx 2 pi = sin 4 pi = 0`

x`= pi/4  at, f(pi/4) = sin 2 xxpi/4 = sin pi/2 = 1`

x `= (3pi)/4  at,  f((3 pi)/4) = sin (3 pi)/2 = - 1`

x `= (5pi)/4  at, f((5pi)/4) = sin (5 pi)/2 = 1`

x `= (7pi)/4  at, f((7pi)/4) = sin (7 pi)/2 = -1`

Thus, the function f(x) attains maximum value 1 at `= pi/4` and x`= (5 pi)/4`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 232]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 8 | Page 232

RELATED QUESTIONS

Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Prove that the following function do not have maxima or minima:

f(x) = ex


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


Show that among rectangles of given area, the square has least perimeter.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


If x + y = 3 show that the maximum value of x2y is 4.


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×