Advertisements
Advertisements
Question
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
Solution
Let the length, breadth and height of the metal box be x cm, x cm and y cm respectively.
It is given that the box can contain 1024 cm3.
∴ 1024 = x2y
`=> y = 1024/x^2` .....(1)
Let C be the cost in rupees of the material used to construct.
Then
`C = 5x^2+5x^2 + 5/2 xx 4xy`
`C = 10x^2 + 10xy`
We have to find the least value of C.
`C = 10x^2 + 10xy`
`C = 10x^2 + 10x xx 1024/x^2`
`C = 10x^2 + 10240/x`
`=> (dC)/(dx) = 20x - 10240/x^2`
And
`=> (d^2C)/(dx^2) = 20 + 20480/x^3`
The Critical number for C are given by `(dC)/(dx) = 0`
Now
`=> (dC)/(dx) = 0`
`=> 20x - 10240/x^2 = 0`
`=> x^3 = 512`
`=> x = 8`
Also `((d^2C)/(dx^2))_(x = 8) = 20 + 20480/8^3 >0`
Thus, the cost of the box is least when x = 8.
Put x = 8 in (1), we get y = 16.
So, dimensions of the box are 8 × 8 × 16
Put x = 8, y = 16 in C = 10x2 + 10xy, we get C = 1920
Hence the least cost of the box is 1920
APPEARS IN
RELATED QUESTIONS
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Prove that the following function do not have maxima or minima:
f(x) = ex
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.
Solve the following:
Find the maximum and minimum values of the function f(x) = cos2x + sinx.
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum
The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
The maximum value of sin x . cos x is ______.
The maximum value of `(1/x)^x` is ______.
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
Divide 20 into two ports, so that their product is maximum.
A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.
Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.