English

If a = Matrix ((2,3,10),(4,-6,5),(6,9,-20))`, Find `A Power (-1)`. Using `Apower(-1) Solve the System of Equation 2byx + 3byy +10/Z = 2`;`4by - 6byy + 5byz = 5`; 6byx + 9byy - 20byz = -4` - Mathematics

Advertisements
Advertisements

Question

if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`

Solution

Let 1/x be a, 1/y be b and 1/x be c

Here

A = `[(2,3,10),(4,-6,5),(6,9,-20)]` and B = `[(2),(5),(-4)]`

|A| = `[(2,3,10),(4,-6,5),(6,9,-20)]`

= 2(120 - 45) -3 (-80-30) +10 (36 + 36)

= 150 + 330 + 720

= 1200

Let `C_(ij)` be the cofactors of the elements `a_(ij)` in `A[a_(ij)]` Then

`X = A^(-1)B`

`=>[(a),(b),(c)] = 1/1200 [(75,150,75),(110,-100,30),(72,0,-24)][(2),(5),(-4)]`

`=> [(a),(b),(c)] = 1/1200 [(150+750-300),(220-500-120),(144+0+96)]`

`=> [(a),(b),(c)] = 1/1200 [(600),(-400),(240)]`

`=> [(a),(b),(c)] = [(1/2),(1/(-3)), (1/5)]`

`=> x = 1/a = 2, y = 1/b = -3, " and " z = 1/c = 5`

∴ x = 2, y = 3 and z = 5

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Delhi Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


Using matrices, solve the following system of equations :

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y - 2z = -3


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




Write the adjoint of the matrix \[A = \begin{bmatrix}- 3 & 4 \\ 7 & - 2\end{bmatrix} .\]


If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×