English

Find A–1 if A = [011101110] and show that A–1 = AIA2-3I2. - Mathematics

Advertisements
Advertisements

Question

Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.

Sum

Solution

We have, A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`

Co-factors are:

A11 = –1,

A12 = 1

A13 = 1

A21 = 1

A22 = –1

A23 = 1

A31 = 1

A31 = 1

A32 = 1

A33 = –1

∴ adj A = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]^"T"`

= `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`

|A| = 0 – 1(–1) + 1.1 = 2

∴ A–1 = `("adj A")/|"A"|`

= `1/2 [(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`

Now, A2 = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)] * [(0, 1, 1),(1, 0, 1),(1, 1, 0)]`

= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)]`

∴ `("a"^2 - 3"I")/2 = 1/2{[(2, 1, 1),(1, 2, 1),(1, 1, 2)] - [(3, 0, 0),(0, 3, 0),(0, 0, 3)]}`

= `1/2 [(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`

= A–1

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 79]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 17 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(a,c),(b,d)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.


Given A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, find BA and use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Evaluate the determinant `Delta = abs (("log"_3  512, "log"_4  3),("log"_3  8, "log"_4  9))`


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×