English

If A = [120-2-1-20-11], find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7. - Mathematics

Advertisements
Advertisements

Question

If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.

Sum

Solution

We have, A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`

Co-factors are:

A11 = –3

A12 = 2

 A13 = 2

A31 = –4

A32 = 2

A33 = 3

∴ adjA = `[(-3, 2, 2),(-2, 1, 1),(-4, 2, 3)]^"T"`

= `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`

|A| = 1(–3) – 2(–2) + 0 = 1

∴ `"A"^-1 ("adj A")/|"A"| = [(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`

Now the system  of linear equations is

x – 2 = 10

2x– y – z = 8

And –2y + z = 7

or AX = B

i.e., `[(1, -2, 0),(2, -1, -1),(0, -2, 1)][(x),(y),(z)] = [(10),(8),(7)]`

Where, A = `[(1, -2, 0),(2, -1, -1),(0, -2, 1)]`

X = `[(x),(y),(z)]` and B + `[(10),(8),(7)]`

∴ X = `"A"^-1"B"`

⇒ `[(x),(y),(z)] = [(-3, 2, 2),(-2, 1, 1),(-4, 2, 3)] [(10),(8),(7)]`

= `[(-30 + 16 + 14),(-20 +8 + 7),(-40 + 16 + 21)]`

= `[(0),(-5),(-3)]`

∴ x = 0, y = –5 and  = –3

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise [Page 79]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 4 Determinants
Exercise | Q 18 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(a,c),(b,d)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


Given A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, find BA and use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×