English

Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant: A = ⎡ ⎢ ⎢ ⎢ ⎣ 2 − 1 0 1 − 3 0 1 − 2 1 1 − 1 1 2 − 1 5 0 ⎤ ⎥ ⎥ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

Question

Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]

Solution

\[M_{11} = 0\left( 0 - 5 \right) - 1\left( 0 + 1 \right) - 2\left( 5 - 1 \right) = - 1 - 8 = - 9\]
\[ M_{21} = - 1\left( 0 - 5 \right) + 1(5 - 1) = 5 + 4 = 9\]
\[ M_{31} = - 1\left( 0 + 10 \right) + 1(0 + 1) = - 10 + 1 = - 9\]
\[ M_{41} = - 1(1 - 2) + 1\left( 0 - 1 \right) = 1 - 1 = 0\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} M_{11} = - 9\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} M_{21} = \left( - 1 \right) \times 9\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} M_{31} = - 9\]
\[ C_{41} = \left( - 1 \right)^{4 + 1} M_{41} = 0\]
\[D = 2\begin{vmatrix}0 & 1 & - 2 \\ 1 & - 1 & 1 \\ - 1 & 5 & 0\end{vmatrix} + 1\begin{vmatrix}- 3 & 1 & - 2 \\ 1 & - 1 & 1 \\ 2 & 5 & 0\end{vmatrix} - 1\begin{vmatrix}- 3 & 0 & 1 \\ 1 & 1 & - 1 \\ 2 & - 1 & 5\end{vmatrix}\]
\[ = - 18 - 27 + 15 = 30\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.1 | Q 1.7 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


If `"A" = [(1,1,1),(1,0,2),(3,1,1)]`, find A-1. Hence, solve the system of equations x + y + z = 6, x + 2z = 7, 3x + y + z = 12.


If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.


Using matrix method, solve the system of equations
3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.


Given A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, find BA and use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Evaluate the determinant `Delta = abs (("log"_3  512, "log"_4  3),("log"_3  8, "log"_4  9))`


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×