English

Write a − 1 for a = [ 2 5 1 3 ] - Mathematics

Advertisements
Advertisements

Question

Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]

Solution

\[\left| A \right| = \begin{vmatrix}2 & 5 \\ 1 & 3\end{vmatrix} = 1 \neq 0\]
\[\text{ Let }C_{ij}\text{ be the cofactor of }a_{ij}\text{ in A . }\]
The cofactors of element A are given by
\[ C_{11} = 3\]
\[ C_{12} = - 1\]
\[ C_{21} = - 5\]
\[ C_{22} = 2\]
\[adj A = \begin{bmatrix}3 & - 1 \\ - 5 & 2\end{bmatrix}^T = \begin{bmatrix}3 & - 5 \\ - 1 & 2\end{bmatrix}\]
\[\left| A \right| = 6 - 5 = 1\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix}3 & - 5 \\ - 1 & 2\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.3 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.3 | Q 28 | Page 36

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`


Using matrices, solve the following system of equations :

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y - 2z = -3


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]


Write the adjoint of the matrix \[A = \begin{bmatrix}- 3 & 4 \\ 7 & - 2\end{bmatrix} .\]


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


If `"A" = [(1,1,1),(1,0,2),(3,1,1)]`, find A-1. Hence, solve the system of equations x + y + z = 6, x + 2z = 7, 3x + y + z = 12.


Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Evaluate the determinant `Delta = abs (("log"_3  512, "log"_4  3),("log"_3  8, "log"_4  9))`


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×