Advertisements
Advertisements
प्रश्न
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]
उत्तर
\[M_{11} = 0\left( 0 - 5 \right) - 1\left( 0 + 1 \right) - 2\left( 5 - 1 \right) = - 1 - 8 = - 9\]
\[ M_{21} = - 1\left( 0 - 5 \right) + 1(5 - 1) = 5 + 4 = 9\]
\[ M_{31} = - 1\left( 0 + 10 \right) + 1(0 + 1) = - 10 + 1 = - 9\]
\[ M_{41} = - 1(1 - 2) + 1\left( 0 - 1 \right) = 1 - 1 = 0\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} M_{11} = - 9\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} M_{21} = \left( - 1 \right) \times 9\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} M_{31} = - 9\]
\[ C_{41} = \left( - 1 \right)^{4 + 1} M_{41} = 0\]
\[D = 2\begin{vmatrix}0 & 1 & - 2 \\ 1 & - 1 & 1 \\ - 1 & 5 & 0\end{vmatrix} + 1\begin{vmatrix}- 3 & 1 & - 2 \\ 1 & - 1 & 1 \\ 2 & 5 & 0\end{vmatrix} - 1\begin{vmatrix}- 3 & 0 & 1 \\ 1 & 1 & - 1 \\ 2 & - 1 & 5\end{vmatrix}\]
\[ = - 18 - 27 + 15 = 30\]
APPEARS IN
संबंधित प्रश्न
Write Minors and Cofactors of the elements of following determinants:
`|(2,-4),(0,3)|`
Write Minors and Cofactors of the elements of following determinants:
`|(a,c),(b,d)|`
Write Minors and Cofactors of the elements of following determinants:
`|(1,0,0),(0,1,0),(0,0,1)|`
Write Minors and Cofactors of the elements of following determinants:
`|(1,0,4),(3,5,-1),(0,1,2)|`
Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`
Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`
If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.
if A = `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`
Using matrices, solve the following system of equations :
2x - 3y + 5z = 11
3x + 2y - 4z = -5
x + y - 2z = -3
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]
Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:
\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]
Write the adjoint of the matrix \[A = \begin{bmatrix}- 3 & 4 \\ 7 & - 2\end{bmatrix} .\]
Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.
If `"A" = [(1,1,1),(1,0,2),(3,1,1)]`, find A-1. Hence, solve the system of equations x + y + z = 6, x + 2z = 7, 3x + y + z = 12.
Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.
If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.
Using matrix method, solve the system of equations
3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.
Given A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, find BA and use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.
If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.
If A `= [(0,1,1),(1,0,1),(1,1,0)] "then" ("A"^2 - 3"I")/2 =` ____________.
Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`