English

Write Minors and Cofactors of the elements of following determinants: |acbd| - Mathematics

Advertisements
Advertisements

Question

Write Minors and Cofactors of the elements of following determinants:

`|(a,c),(b,d)|`

Sum

Solution

The given determinant is `|(a,c),(b,d)|`

Minor of element aij is Mij.

∴M11 = minor of element a11 = d

M12 = minor of element a12 = b

M21 = minor of element a21 = c

M22 = minor of element a22 = a

Cofactor of aij is Aij = (−1)i + j Mij.

∴A11 = (−1)1+1 M11 = (−1)2 (d) = d

A12 = (−1)1+2 M12 = (−1)3 (b) = −b

A21 = (−1)2+1 M21 = (−1)3 (c) = −c

A22 = (−1)2+2 M22 = (−1)4 (a) = a

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.4 [Page 126]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.4 | Q 1.2 | Page 126

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write Minors and Cofactors of the elements of following determinants:

`|(2,-4),(0,3)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


if A =  `((2,3,10),(4,-6,5),(6,9,-20))`, Find `A^(-1)`. Using `A^(-1)` Solve the system of equation `2/x + 3/y +10/z = 2`; `4/x - 6/y + 5/z = 5`; `6/x + 9/y - 20/z = -4`


Using matrices, solve the following system of equations :

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y - 2z = -3


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}5 & 20 \\ 0 & - 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.


If A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, find A–1. Using A–1, solve the system of linear equations x – 2y = 10 , 2x – y – z = 8 , –2y + z = 7.


Using matrix method, solve the system of equations
3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.


Given A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, find BA and use this to solve the system of equations y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.


Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×