Advertisements
Advertisements
Question
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Solution
f(x) = 2x3 – 21x2 + 36x – 20
∴ f'(x) = `d/dx(2x^3 - 21x^2 + 36x - 20)`
= 2 x 3x2 – 21 x 2x + 36 x 1 – 0
= 6x2 – 42x + 36
and
f'(x) = `d/dx(6x^2 - 42x + 36)`
= 6 x 2x – 42 x 1 + 0
= 12 x – 42
f'(x) = 0 gives 6x2 – 42x + 36 = 0
∴ x2 – 7x + 6 = 0
∴ (x – 1)(x – 6) = 0
∴ the roots of f'(x) = 0 are x1 = 1 and x2 = 6.
Method 1 (Second Derivative Test) :
(a) f'(1) = 12(1) – 42 = – 30 < 0
∴ by the second derivative test , f has maximum at x = 1 and maximum value of f at x = 1
= f(1)
= 2(1)3 – 21(1)2 + 36(1) – 20
= 2 – 21 + 36 – 20
= – 3
(b) f'(6) = 12(6) – 42 = 30 > 0
∴ by the second derivative test , f has minimum at x = 6 and minimum value of f at x = 6
= f(6)
= 2(6)3 – 21(6)2 + 36(6) – 20
= 432 – 756 + 216 – 20
= – 128.
Hence, the function f has maximum value – 3 at x = 1 and minimum value – 128 at x = 6.
Method 2 (Second Derivative Test) :
(a) f'(x) = 6(x – 1)(x – 6)
Consider x = 1
Let h be a small positive number. Then
f'(1 – h)
= 6(1 – h – 1)(1 – h – 6)
= 6(– h)(– 5 – h)
= 6h(5 + h) > 0
and
f'(1 + h)
= 6(1 + h – 1)(1 + h – 6)
= 6h(h – 5) < 0,
as h is small positive number.
∴ by the first derivative test, f has maximum at x = 1 and maximum value of f at x = 1
= f(1)
= 2(1)3 – 21(1)2 + 36(1) – 20
= 2 – 21 + 36 – 20
= – 3
(b) f'(x) = 6(x – 1)(x – 6)
Consider x = 6
Let h be a small positive number. Then
f'(6 – h)
= 6(6 – h – 1)(6 – h – 6)
= 6(5 – h)(– h)
= 6h(5 – h) < 0,
as h is small positive number
and
f'(6 + h)
= 6(6 + h – 1)(6 + h – 6)
= 6(5 + h)(h) < 0,
∴ by the first derivative test, f has minimum at x = 6 and minimum value of f at x = 6
= f(6)
= 2(6)3 – 21(6)2 + 36(16) – 20
= 432 – 756 + 216 – 20
= – 128
Hence, the function f has maximum value – 3 at=1 and minimum value – 128 at x = 6.
Note : Out of the two methods, given above, we will use the second derivative test for the remaining problems.
APPEARS IN
RELATED QUESTIONS
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere
A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`h(x) = sinx + cosx, 0 < x < pi/2`
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum and minimum values of x + sin 2x on [0, 2π].
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.
An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.
Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/(3)`.
Determine the maximum and minimum value of the following function.
f(x) = x log x
Divide the number 20 into two parts such that their product is maximum.
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
If f(x) = x.log.x then its maximum value is ______.
If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
The maximum value of sin x . cos x is ______.
The maximum value of `(1/x)^x` is ______.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.
Read the following passage and answer the questions given below.
|
- Is the function differentiable in the interval (0, 12)? Justify your answer.
- If 6 is the critical point of the function, then find the value of the constant m.
- Find the intervals in which the function is strictly increasing/strictly decreasing.
OR
Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.
A function f(x) is maximum at x = a when f'(a) > 0.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The minimum value of 2sinx + 2cosx is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.
Solution: Let x cm and y cm be the length and breadth of a rectangle.
Then its area is xy = 50
∴ `y =50/x`
Perimeter of rectangle `=2(x+y)=2(x+50/x)`
Let f(x) `=2(x+50/x)`
Then f'(x) = `square` and f''(x) = `square`
Now,f'(x) = 0, if x = `square`
But x is not negative.
∴ `x = root(5)(2) "and" f^('')(root(5)(2))=square>0`
∴ by the second derivative test f is minimum at x = `root(5)(2)`
When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`
∴ `x=root(5)(2) "cm" , y = root(5)(2) "cm"`
Hence, rectangle is a square of side `root(5)(2) "cm"`
If x + y = 8, then the maximum value of x2y is ______.
Divide the number 100 into two parts so that the sum of their squares is minimum.
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`
Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.