English

Find the maximum and minimum values of x + sin 2x on [0, 2π]. - Mathematics

Advertisements
Advertisements

Question

Find the maximum and minimum values of x + sin 2x on [0, 2π].

Sum

Solution

Let f (x) = x + sin2x, 0 ≤ x ≤ 2π

⇒ f' (x) = 1 + 2cos 2x

⇒ For critical points, let f' (x) = 0

⇒ 1 + cos 2x = 0

⇒ `cos 2x = -1/2`

⇒ `cos 2x = -cos  pi/3`

(If 0< x < 2π, then 0< 2x < 4π)

`⇒ cos 2x = cos (pi- pi/3), cos (pi + pi/2), cos (3pi - pi/3), cos (3pi + pi/3)`

⇒ `2x = (2pi)/3 , (4pi)/3, (8pi)/3, (10pi)/3`

⇒ `x = pi/3, (2pi)/3, (4pi)/3, (5pi)/3`

So, for finding maximum and minimum, we evaluate f (x) at `0, 2pi , pi/3, (2pi)/3, (4pi)/3, (5pi)/3`

Now f(0) = 0 + sin 0 = 

f (2π) = 2π + sin 4π = 2π + 0 = 2π

`f (pi/3) = pi/3 + sin  (2pi)/3 = pi/3 + sin (pi - pi/3)`

= `pi/3 + sin  pi/3 = pi/3 + sqrt3/2`

`f ((2pi)/3) = (2pi)/3 + sin  (4pi)/3 = (2pi)/3 + sin (pi + pi/3)`

= `(2pi)/3 -sin  pi/3 = (2pi)/3 - sqrt3/2`

`f((4pi)/3) = (4pi)/3 + sin  (8pi)/3 = (4pi)/3 + sin (2pi + (2pi)/3)`

= `(4pi)/3 + sin  (2pi)/3 = (4pi)/3 + sqrt3/2`

and `f ((5pi)/3) = (5pi)/3 + sin  (10pi)/3 = (5pi)/3 + sin (3pi + pi/3)`

= `(5pi)/3 -sin  pi/3 = (5pi)/3 - sqrt3/2`

Thus, maximum value of f (x) = 2π at x = 2π and minimum value of f (x) = 0 at x = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 233]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 12 | Page 233

RELATED QUESTIONS

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


If x + y = 3 show that the maximum value of x2y is 4.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


The minimum value of 2sinx + 2cosx is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×