English

Find two numbers whose sum is 24 and whose product is as large as possible. - Mathematics

Advertisements
Advertisements

Question

Find two numbers whose sum is 24 and whose product is as large as possible.

Sum

Solution

Let first number = x then second number = 24 - x.

According to the question, their product p = x(24 - x) = 24x - x2               ..…(1)

For highest and lowest value, dpdx=0

On differentiating equation (1) with respect to x,

dpdx=24-2x

0=24-2x

2x=24

x=12

Again differentiating equation (1) with respect to x,

d2pdx2=-2     (negative value)

(d2pdx2)x=12=-2<0

p has a masimum value at x = 12

So, the requied number are 12 and 24 - 12 = 12

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 233]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 13 | Page 233

RELATED QUESTIONS

Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x)=1x2+2


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


The maximum value of [x(x1)+1]13 , 0 ≤ x ≤ 1 is ______.


Find the maximum area of an isosceles triangle inscribed in the ellipse  x2a2+y2b2=1 with its vertex at one end of the major axis.


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Divide the number 20 into two parts such that their product is maximum.


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) =

∴ f'(x) =

∴ f''(x) =

For extreme value, f'(x) = 0, we get

x =

∴ f''() = – 2 < 0

∴ Area is maximum when x = , y =

∴ Dimensions of rectangle are


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Range of projectile will be maximum when angle of projectile is


The point on the curve x2=2y which is nearest to the point (0, 5) is


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


The greatest value of the function f(x) = tan-1x-12logx in [13,3] is ______.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.