English

Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 - Mathematics

Advertisements
Advertisements

Question

Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 

Sum

Solution

We have, f (x) = 10 - (x - 1)2 for all x ∈ R

since, (x - 1)2 ≥ 0 ∀ x ∈ R

= - (x - 1)2 ≤ 0 ∀ x ∈ R

= 10 - (x - 1)2 ≤ ∀ x ∈ R

∴ Maximum f (x) = 10 which occurs when x - 1 = 0 i.e, when x = 1

f (x) has no minimum value for, f (x) → - ∞ As |x| →∞ 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 231]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 1.3 | Page 231

RELATED QUESTIONS

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Divide the number 20 into two parts such that their product is maximum.


The function f(x) = x log x is minimum at x = ______.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


If x is real, the minimum value of x2 – 8x + 17 is ______.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


A function f(x) is maximum at x = a when f'(a) > 0.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×