Advertisements
Advertisements
Question
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
Solution
f(x) = 2x3 - 24x + 107, interval [1, 3]
f'(x) = 6x2 - 24
For the highest and lowest values, f‘(x) = 0
⇒ 6x2 - 24 = 0
⇒ 6x2 = 24
⇒ x2 = 4
⇒ x = ± 2
Putting the values of x in f(x) = 2x3 - 24x + 107 for the interval [1, 3],
At, x = 1 f(1) = 2(1)3 - 24 (1) + 107 = 2 - 24 + 107 = 85
At, x = 3 f (3) = 2(3)3 - 24 (3) + 107 = 54 - 72 + 107 = 89
At, x = 2 f(2) = 2(2)3 - 24(2) + 107 = 16 - 48 + 107 = 75
Thus, the maximum value of f(x) = 89,
At x = 3, for the interval [-3,-1] we find the value of f(x) at x = - 3, - 2, - 1.
At, x = – 3 f(-3) = 2(-3)3 - 24 (-3) + 107 = - 54 + 72 + 107 = - 54 + 179 = 125
At, x = – 1 f(-1) = 2 (-1)3 - 24 (-1) + 107 = -2 +24 + 107 = 129
At, x = - 2 f(-2) = 2(-2)3 - 24 (-2) + 107 = -16 + 48 +107 = 139
Thus, the maximum value of f(x) = 139 at x = -2.
APPEARS IN
RELATED QUESTIONS
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.
Find the maximum and minimum of the following functions : f(x) = `logx/x`
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
Show that among rectangles of given area, the square has least perimeter.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Determine the maximum and minimum value of the following function.
f(x) = 2x3 – 21x2 + 36x – 20
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
Divide the number 20 into two parts such that their product is maximum
If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.
The minimum value of the function f(x) = 13 - 14x + 9x2 is ______
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
Range of projectile will be maximum when angle of projectile is
The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is
If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.
A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.